Allmann, R. (1977). Neues Jahrb. Mineral. Monatsh. 3, 136-144.
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663. USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. \& Kuzel, H.-J. (1982). Cem. Concr. Res. 12, 517-526.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tersis, A., Filippakis, S., Kuzel, H.-J. \& Burzlaff, H. (1987). Z. Kristallogr. 181, 29-34.

Acta Cryst. (1998). C54, 1217-1219

$\mathbf{V}_{2} \mathbf{M n T e O}_{7}$

Christopher R. Feger and Joseph W. Kolis
Department of Chemistry, Clemson University, Clemson, SC 29634, USA. E-mail: kjoseph@clemson.edu

(Received 5 January 1998; accepted 24 March 1998)

Abstract

The title compound, divanadium manganese tellurite, $\mathrm{V}_{2} \mathrm{MnTeO}_{7}$, was obtained by hydrothermal methods. The structure of this compound is made up of slabs, running parallel to the $x y$ plane, that contain TeO_{3+1} units and MnO_{6} octahedra, along with distorted VO_{5} square pyramids and VO_{6} octahedra. Examination of the metal environments and bond-valence-sum calculations show that this compound is an $\mathrm{Mn}^{\mathrm{II}} / \mathrm{V}^{\mathrm{IV}} / \mathrm{Te}^{\mathrm{IV}}$ compound.

Comment

Recently, we have become interested in tellurium(IV) oxides due to their complex structures, as well as their potential as glass-forming materials (Stanworth, 1952). In our studies, we have explored the chemistry of first row transition metal tellurites, including the $M_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$ series (Feger et al., 1998), the mineral rodalquilarite, $\mathrm{H}_{3} \mathrm{Fe}_{2}\left(\mathrm{TeO}_{3}\right)_{4} \mathrm{Cl}$ (Dusausoy \& Protas, 1969; Feger \& Kolis, 1998c), and two chloride compounds, $\mathrm{Ba}_{2} \mathrm{Cu}_{4} \mathrm{Te}_{4} \mathrm{O}_{11} \mathrm{Cl}_{4}$ and $\mathrm{BaCu}_{2} \mathrm{Te}_{2} \mathrm{O}_{6} \mathrm{Cl}_{2}$ (Feger \& Kolis, $1998 b$). With these results, and with the discovery of $\mathrm{Na}_{3} \mathrm{Mn}_{4} \mathrm{Te}_{2} \mathrm{O}_{12}$ (Feger \& Kolis, 1998a), a $\mathrm{Te}^{\mathrm{VI}}$ compound, we have decided to explore the chemistry of manganese tellurites further. We have previously isolated the known mineral spiroffite, $\mathrm{Mn}_{2} \mathrm{Te}_{3} \mathrm{O}_{8}$, and recently we have attempted to add other unique building
blocks, such as vanadates, to influence the structure. This has led to the synthesis and characterization of the new compound, $\mathrm{V}_{2} \mathrm{MnTeO}_{7}$, the first transition metal vanadate-tellurite.

Fig. 1. Unit-cell view of $\mathrm{V}_{2} \mathrm{MnTeO}_{7}$ shown down the x axis. The striped spheres are V atoms, the cross-hatched spheres are Mn , the large shaded spheres are Te atoms, and the small open spheres are O atoms.

The structure of $\mathrm{V}_{2} \mathrm{MnTeO}_{7}$ is best viewed in terms of slabs running parallel to the $x y$ plane (Fig. 1). These slabs are interconnected through $\mathrm{Mn}-\mathrm{O}$ interactions, and can be further broken down into metal layers. Each slab consists of two of these layers containing the metal atoms, connected through O atoms. The metal coordination environments (Fig. 2) are typical, with the Mn atom in an octahedral environment, and the two V atoms in distorted octahedral and distorted square-pyramidal geometries. These V environments are both highly similar to those in the VTeO_{4} phases, with the distorted octahedron of V1 nearly identical to

Fig. 2. Displacement ellipsoid plots of the four crystallographically distinct metal environments in $\mathrm{V}_{2} \mathrm{MnTeO}_{7}$, shown at the 70% probability level. Symmetry codes are as in Table 1.
that in $\alpha-\mathrm{VTeO}_{4}$ (Meunier et al., 1972), and the V 2 environment very similar to that in $\beta-\mathrm{VTeO}_{4}$ (Meunier et al., 1973). In addition, the V atoms both have typical vanadyl interactions with an O atom [V1-O5 = 1.668 (4) and $\mathrm{V} 2-\mathrm{O} 6=1.641$ (5) \AA] . The Te atom sits within a TeO_{3+1} fragment, which is also seen in several compounds, including $\mathrm{Te}_{6} \mathrm{O}_{11} \mathrm{Cl}_{2}$ (Abriel, 1981) and $\mathrm{CuTe}_{2} \mathrm{O}_{5}$ (Hanke et al., 1973).

In assigning oxidation states for the metal atoms, the O atoms were assumed to be -2 and the Te atoms were assumed to be tetravalent, due to the presence of a stereochemical lone pair in the TeO_{3+1} environment. Using these assignments, there are ten positive charges which must be distributed over the remaining V and Mn atoms. The oxidation states of the remaining atoms were calculated through the use of bond-valence sums (Brown \& Altermatt, 1985). This resulted in assignments of +2 for the Mn atom, and +4 for both crystallographically distinct V atoms. Calculations using other potential assignments resulted in either significantly overbonded or underbonded O atoms.

Experimental

Crystals of $\mathrm{V}_{2} \mathrm{MnTeO}_{7}$ were prepared from the hydrothermal reaction of $\mathrm{V}_{2} \mathrm{O}_{5}$ (79 mg , Strem, 99%), $\mathrm{Mn}_{2} \mathrm{O}_{3}(69 \mathrm{mg}$, Strem, 99%), and TeO_{2} ($69 \mathrm{mg}, \mathrm{Strem}, 99+\%$). The starting reagents were sealed in fused-silica tubing (1.6 ml sealed volume) with 0.7 ml 1 M aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction tube was placed in a high-pressure autoclave, which was then pressurized with Ar gas to 17000 kPa . The autoclave was then placed in a furnace and heated at 648 K . After the autoclave was removed from the furnace, the reaction products were filtered and washed with water and acetone. The title compound was obtained as air-stable red-brown blades in approximately 30% yield. Qualitative EDAX confirmed the presence of $\mathrm{V}, \mathrm{Mn}, \mathrm{Te}$, and O , and the absence of impurities heavier than F .

Crystal data

$\mathrm{V}_{2} \mathrm{MnTeO}_{7}$
$M_{r}=396.42$
Triclinic
$P \overline{1}$
$a=6.712(2) \AA$
$b=6.892(2) \AA$
$c=7.855(2) \AA$
$\alpha=94.27(2)^{\circ}$
$\beta=114.47(2)^{\circ}$
$\gamma=114.79(2)^{\circ}$
$V=286.4(1) \AA^{3}$
$Z=2$
$D_{x}=4.596 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-7R diffractometer

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 24 reflections
$\theta=9.6-16.7^{\circ}$
$\mu=10.34 \mathrm{~mm}^{-1}$
$T=295.2 \mathrm{~K}$
Blade
$0.31 \times 0.03 \times 0.02 \mathrm{~mm}$
Red-brown
$\omega-2 \theta$ scans
Absorption correction:
empirical via ψ scans
(North et al., 1968)
$T_{\text {min }}=0.04, T_{\text {max }}=0.81$
1409 measured reflections
1315 independent reflections

Refinement

Refinement on F
$R=0.028$
$w R=0.035$
$S=1.14$
1154 reflections
100 parameters
$w=1 /\left[\sigma^{2}(F)+0.0005 F^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=27.54^{\circ}$
$h=-7 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-7 \rightarrow 10$
3 standard reflections
every 100 reflections
intensity decay: -0.19%
$\Delta \rho_{\text {max }}=1.53 \mathrm{e}^{\AA} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.22 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Selected bond lengths (\AA)

Tel- Ol^{1}	1.916 (4)	V1-02	1.950 (3)
Tel-O3	2.341 (6)	V1-03	2.104 (4)
Tel-O4	1.866 (4)	$\mathrm{VI}-\mathrm{O3}^{1}$	1.964 (4)
Tel-O7"	1.940 (6)	V1-O4	2.095 (6)
Mnl - $\mathrm{Ol}{ }^{11}$	2.147 (6)	V1-05	1.668 (4)
$\mathrm{MnI}-\mathrm{O} 4$	2.118 (3)	$\mathrm{V} 2-\mathrm{O} 2$	1.931 (4)
$\mathrm{Mnl}-\mathrm{O} 5$	2.326 (6)	$\mathrm{V} 2-\mathrm{O} 2^{\prime}$	1.963 (5)
$\mathrm{Mnl}-\mathrm{O} 5^{\text {ini }}$	2.101 (4)	$\mathrm{V} 2-\mathrm{O} 3$	1.959 (4)
Mnl - $\mathrm{O6}^{\text {i* }}$	2.139 (5)	V2-06	1.641 (5)
$\mathrm{Mnl}-\mathrm{O7}^{\text {i }}$	2.222 (5)	$\mathrm{V} 2-\mathrm{O} 7$	1.925 (5)
V1-Ol	1.946 (6)		

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $x-1, y, z ;$ (iii) $-1-x,-y,-z$; (iv) $-x, 1-y, 1-z$ (v) $1-x, 1-y, 1-z$.

The Te, Mn, and V atoms were located by direct methods, and the O atoms were located from progressive Fourier difference maps. After a reasonable model was reached, all atomic displacement parameters were refined anisotropically. The maximum and minimum residual density peaks were located 0.82 and $0.76 \AA$, respectively, from Te 1 .

Data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Corporation, 1992). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1993). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXTL-Plus (Sheldrick, 1990). Molecular graphics: SHELXTL-Plus.

CRF would like to thank George L. Schimek for many valuable discussions. This work was funded by the US National Science Foundation under Grant No. CHE-9102548.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR 1206). Services for accessing these data are described at the back of the journal.

References

Abriel, W. (1981). Z. Naturforsch. Teil B, 36, 405-409.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Dusausoy, Y. \& Protas, J. (1969). Acta Cryst. B25, 1551-1558.
Feger, C. R. \& Kolis, J. W. (1998a). Acta Cryst. C54, 1055-1057.
Feger, C. R. \& Kolis, J. W. (1998b). Inorg. Chem. Submitted.
Feger, C. R. \& Kolis, J. W. (1998c). J. Solid State Chem. Submitted.

Feger, C. R., Schimek, G. L. \& Kolis, J. W. (1998). J. Solid State Chem. Submitted.
Hanke, K., Kupcik, V. \& Lindqvist, O. (1973). Acta Cryst. B29, 963970.

Meunier, G., Darriet, J. \& Galy, J. (1972). J. Solid State Chem. 5, 314-320.
Meunier, G., Darriet, J. \& Galy, J. (1973). J. Solid State Chem. 6, 67-73.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6b. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Sheldrick, G. M. (1990). SHELXTL-Plus. Version 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stanworth, J. E. (1952). Nature, 169, 581-582.

Acta Cryst. (1998). C54, 1219-1220

Caesium Dioxoantimonate(III), $\mathbf{C s S b O}_{2}$

Christian Hirschle and Caroline Röhr
Institut fuir Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany. E-mail: caroline@ruby.chemie.uni-freiburg.de

(Received 16 January 1998; accepted 24 February 1998)

Abstract

CsSbO_{2} crystallizes in the monoclinic space group $C 2 / c$, is isotypic with NaBiO_{2} and CsBiO_{2}, and contains infinite ${ }_{\infty}^{1}\left[\mathrm{SbO}_{2 / 2} \mathrm{O}_{2 / 2}^{\prime}\right]$ chains running parallel to [001].

Comment

In the $\mathrm{Cs}-\mathrm{Sb}-\mathrm{O}$ system, the oxoantimonates (V) $\mathrm{Cs}_{3} \mathrm{SbO}_{4}$ (Duquenoy, 1974) and CsSbO_{3} (Josien \& Duquenoy, 1980) are known from X-ray powder investigations, but no structural parameters based on singlecrystal data have been published until now. Whereas the complete series of alkali metal oxobismuthates(III) is known, the caesium oxoantimonate(III) CsSbO_{2}, which can be synthesized by reaction of $\mathrm{Sb}_{2} \mathrm{O}_{3}$ with elemental caesium, is the first $\mathrm{Sb}^{\text {III }}$ compound in the corresponding ternary Sb system to be characterized by singlecrystal methods. It crystallizes in the monoclinic system with space group $C 2 / c$ and is isotypic with the bismuthates(III) NaBiO_{2} (Schwedes \& Hoppe, 1972) and CsBiO_{2} (Zoche \& Jansen, 1997). In accordance with the lone pair of $\mathrm{Sb}^{\mathrm{III}}$, the Sb atoms are coor-
dinated by four O atoms in a Ψ-trigonal bipyramidal geometry. The $\mathrm{Sb}-\mathrm{O}$ distances of $1.95(1)(2 \times)$ and 2.17 (1) $\AA(2 \times)$ (Fig. 1) are in the range known for other $\mathrm{Sb}-\mathrm{O}$ compounds $\left[1.90 \AA\right.$ in $\mathrm{Na}_{3} \mathrm{SbO}_{3}$ (Stöver \& Hoppe, 1980); $1.98 \AA$ in cubic $\mathrm{Sb}_{2} \mathrm{O}_{3}$ (Svensson, 1974); $1.98 \AA$ in orthorhombic $\mathrm{Sb}_{2} \mathrm{O}_{3}$ (Svensson, 1975)]. The two short $\mathrm{Sb}-\mathrm{O}$ bonds in the equatorial position of the Ψ-trigonal bipyramid include an angle of $103.4(3)^{\circ}$, whereas the O (equatorial)- $\mathrm{Sbl}-\mathrm{O}$ (axial) angles deviate only slightly from 90°. The $\mathrm{O}-\mathrm{Sb}-\mathrm{O}$ angle involving the two axial ligands [161.0(3) ${ }^{\circ}$] is appreciably smaller than 180°, in accordance with the GillespieNyholm concept.

Fig. 1. View of the $\infty^{1}\left[\mathrm{SbO}_{2 / 2} \mathrm{O}_{2 / 2}^{\prime}\right]$ chains (50% probability ellipsoids). $\mathrm{Sb}-\mathrm{O}$ distances are given in \AA.

The $\mathrm{SbO}_{4} \Psi$-trigonal bipyramids are connected via common edges to form infinite ${ }_{\infty}^{1}\left[\mathrm{SbO}_{2 / 2} \mathrm{O}_{2 / 2}\right]$ chains running parallel to the [001] direction. The chains form a hexagonal closed-rod packing.

Each Cs atom is coordinated by six O1 atoms in a distorted trigonal prismatic arrangement, with CsO distances ranging from 2.98 (1) to 3.38 (1) \AA (Fig. 2). Their coordination polyhedra are connected via common edges to form chains running parallel to [101]; the

Fig. 2. The crystal structure of CsSbO_{2} showing the caesium coordination polyhedron.

